Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Rong Han, ${ }^{\text {a* }}$ Xiao-Li Zhen, ${ }^{\text {a }}$ Xia Tian ${ }^{\text {a }}$ and Shou-Xin Liu ${ }^{\text {b* }}$

${ }^{\text {a }}$ College of Sciences, Hebei University of Science \& Technology, Shijiazhuang 050018, People's Republic of China, and ${ }^{\text {b }}$ College of Chemical \& Pharmaceutical Engineering, Hebei University of Science \& Technology,
Shijiazhuang 050018, People's Republic of China

Correspondence e-mail:
han_jianrong@163.com,
liu_shouxin@163.com

The title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$, crystallizes with two molecules in the asymmetric unit. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ interactions help to consolidate the crystal packing.

Comment

There has been a steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potential applications in areas such as biological modeling, catalysis, and molecular magnets (Jones et al., 1979; Larson \& Pecoraro, 1991). Consequently, a significant effort has been devoted to the synthesis of new Schiff base derivatives (Santos et al., 2001).

As a part of our interest in the coordination properties of Schiff bases functioning as ligands, we investigated the title compound, (I), used as a precursor in the preparation of Schiff bases.

The asymmetric unit of (I) consists of two independent molecules, which are similar to each other. All the bond lengths and angles are within the normal ranges (Allen et al., 1987). Both of the vanillin groups are essentially planar, with an r.m.s. deviation for fitted atoms of $0.0114 \AA$ for C1-C6/C8/ $\mathrm{O} 1 / \mathrm{O} 2$ and $0.0153 \AA$ for $\mathrm{C} 11-\mathrm{C} 16 / \mathrm{C} 18 / \mathrm{O} 4 / \mathrm{O} 5$. The dihedral angle between the two vanillin mean planes is $12.77(8)^{\circ}$.

Various $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and bifurcated $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ intermolecular interactions are found in the crystal structure of (I) (Table 1). These result in one-dimensional chains of molecules propagating along [010] (Fig. 2).

Experimental

An anhydrous acetonitrile solution (50 ml) of 3-hydroxy-4methoxybenzaldehyde $(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was added dropwise to a solution $(100 \mathrm{ml})$ of 2-chloroacetonitrile $(0.76 \mathrm{~g}, 10 \mathrm{mmol})$ and potassium carbonate $(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile over a period of 30 min , and the mixture refluxed for 24 h under a nitrogen atmosphere. The solvent was removed and the resultant mixture poured into ice-water $(100 \mathrm{ml})$. The pale-yellow precipitate was then isolated, recrystallized from acetonitrile, and dried in a vacuum to

[^0]
2-(5-Formyl-2-methoxyphenoxy)acetonitrile

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.130$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
The asymmetric unit of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
give the pure compound in 52% yield. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$
$M_{r}=191.18$
Triclinic, $P \overline{1}$
$a=8.428(2) \AA$
$b=10.138(3) \AA$
$c=12.629(3) \AA$
$\alpha=69.136(4){ }^{\circ}$
$\beta=84.967(4)^{\circ}$
$\gamma=71.163(4)^{\circ}$

Data collection

Bruker SMART APEX CCD area-	4846 measured reflections
detector diffractometer	3322 independent reflections
ω scans	2166 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.019$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=25.0^{\circ}$
$T_{\min }=0.958, T_{\max }=0.986$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0578 P)^{2}\right. \\
& \quad+0.1537 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& V=953.9(4) \AA^{3} \\
& Z=4 \\
& D_{x}=1.331 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless $0.26 \times 0.24 \times 0.14 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.130$
$S=1.04$
3322 reflections
255 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C19-H19A ${ }^{\text {O }} \mathrm{O}^{\text {i }}$	0.97	2.39	3.330 (2)	162
C19-H19A ${ }^{\text {O }} \mathrm{O}^{\text {i }}$	0.97	2.52	3.168 (3)	125
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O}^{\text {ii }}$	0.97	2.46	3.410 (2)	168
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4^{\text {ii }}$	0.97	2.49	3.206 (3)	131
C19-H19B..O3 $3^{\text {iii }}$	0.97	2.48	2.985 (3)	112
C9-H9B $\cdots \mathrm{O}^{\text {iv }}$	0.97	2.49	3.036 (3)	116

Symmetry codes: (i) $x-1, y, z+1$; (ii) $x+1, y, z-1$; (iii) $x-1, y+1, z+1$; (iv) $x+1, y-1, z-1$.

Figure 2
Packing diagram for (I), with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions drawn as dashed lines.

H atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The project was supported by the Foundation of the Education Department of Hebei Province (grant No. 606022).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Jones, R. D., Summerville, D. A. \& Basolo, F. (1979). Chem. Rev. 17, 139-179. Larson, E. J. \& Pecoraro, V. L. (1991). J. Am. Chem. Soc. 113, 3810-3818.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

